Exploiting Structure and Behavior of Highly Configurable Systems to Measure Performance

Miguel Velez
Software Engineering Ph.D. student
Carnegie Mellon University
Joint work with: Christian Kästner, Pooyan Jamshidi, and
Norbert Siegmund

Most software is highly configurable

Measuring performance in HCS is difficult

For developers and users

Overwhelmed by choices

Lose track of interactions

In an ideal world

"For each valid configuration, x is the y you will get" y = quality attribute x = actual value

Configuration	Execution Time
A=0 B=0 C=0 D=0	6s
A=0 B=0 C=1 D=1	6s
A=1 B=0 C=0 D=1	9s

$$T = 3A + 1AB + 6$$

Black-Box Approach

	А	В	С	D	Т
1	0	0	0	0	6
2	0	0	0	1	6
3	0	0	1	0	6
4	0	0	1	1	6
5	0	1	0	0	6
6	0	1	0	1	6
7	0	1	1	0	6
8	0	1	1	1	6
9	1	0	0	0	9
10	1	0	0	1	9
11	1	0	1	0	9
12	1	0	1	1	9
13	1	1	0	0	10
14	1	1	0	1	10
15	1	1	1	0	10
16	1	1	1	1	10

Black-Box Approach

	A	В	С	D	Т
1	0	0	0	0	6
2	0	0	0	1	6
3	0	0	1	0	6
4	0	0	1	1	6
5	0	1	0	0	6
6	0	1	0	1	6
7	0	1	1	0	6
8	0	1	1	1	6
9	1	0	0	0	9
10	1	0	0	1	9
11	1	0	1	0	9
12	1	0	1	1	9
13	1	1	0	0	10
14	1	1	0	1	10
15	1	1	1	0	10
16	1	1	1	1	10

Black-Box Approach

	Α	В	С	D	Т
1	0	0	0	0	6
2	0	0	0	1	6
3	0	0	1	0	6
4	0	0	1	1	6
5	0	1	0	0	6
6	0	1	0	1	6
7	0	1	1	0	6
8	0	1	1	1	6
9	1	0	0	0	9
10	1	0	0	1	9
11	1	0	1	0	9
12	1	0	1	1	9
13	1	1	0	0	10
14	1	1	0	1	10
15	1	1	1	0	10
16	1	1	1	1	10

Black-Box in practice

	Α	В	С	D	Т
1	0	0	0	0	6
2	0	0	0	1	6
3	0	0	1	0	6
4	0	0	1	1	6
5	0	1	0	0	6
6	0	1	0	1	6
7	0	1	1	0	6
8	0	1	1	1	6
9	1	0	0	0	9
10	1	0	0	1	9
11	1	0	1	0	9
12	1	0	1	1	9
13	1	1	0	0	10
14	1	1	0	1	10
15	1	1	1	0	10
16	1	1	1	1	10

Black-Box in practice

	А	В	С	D	Т
1	0	0	0	0	6
2	0	0	0	1	6
3	0	0	1	0	6
4	0	0	1	1	6
5	0	1	0	0	6
6	0	1	0	1	6
7	0	1	1	0	6
8	0	1	1	1	6
9	1	0	0	0	9
10	1	0	0	1	9
11	1	0	1	0	9
12	1	0	1	1	9
13	1	1	0	0	10
14	1	1	0	1	10
15	1	1	1	0	10
16	1	1	1	1	10

Ideally

Want to find interactions

Identify what we need to measure

Determine if we do not need to measure all configurations

Our Proposal: Exploit Structure and Behavior of the Program to Measure Performance

White-Box Analysis

$$x = A$$

 $y = B$
 $s|eep(6)$
 $if(x)$
 $s|eep(3)$
 $if(y)$
 $s|eep(1)$

What We Can Do With Structure and Behavior

Determine how options are used

Identify interactions

Compare execution traces based on configurations

Know if we need to execute all configurations or subset

Approach: Combine Static Taint Analysis with Dynamic Analysis

Goal

x = A y = B AB sleep(6) if(x) sleep(3) B? [if(y) sleep(1)

AB
$$y=B$$

 $y=B$
 $s|eep(6)$
 $if(x)$
 $s|eep(3)$
 $if(y)$
 $s|eep(1)$

AB
$$x = A$$
 $\{x_A\}$
 $y = B$
 $|eep(6)|$
 $|f(x)|$
 $|f(y)|$
 $|f(y)|$
 $|f(y)|$

AB
$$x = A$$
 $\{x_A\}$
 $y = B$ $\{x_A\}$
 y

AB
$$y = \beta$$
 $\{x_A\}$
 $y = \beta$ $\{x_A\}$
 $|eep(6)|\{x_A\}$
 $|f(x)|$
 $|f(y)|$
 $|f(y)|$
 $|f(y)|$
 $|f(y)|$

AB
$$y = \beta$$
 $\{x_A\}$
 $y = \beta$ $\{x_A\}$
 $|eep(6)|\{x_A\}$
 $|f(x)|\{x_A\}$
 $|f(y)|$
 $|f(y)|$
 $|f(y)|$
 $|f(y)|$

AB
$$y = \beta$$
 $\{x_A\}$
 $y = \beta$ $\{x_A\}$
 $|x_A|$
 $|x_A|$

AB
$$y = \beta$$
 $\{x_A\}$
 $y = \beta$ $\{x_A\}$
 $\{$

AB
$$y = \beta$$
 $\{x_A\}$
 $y = \beta$ $\{x_A\}$
 $\{$

AB
$$y = B$$
 $\{x_A\}$
 $y = B$ $\{x_A\}$
 $S = B$
 S

AB
$$y = B \{ X_A \}$$
 $y = B \{ X_A \}$
 $S = B \{ X$

Relevant Statements and Options

AB
$$x = A$$

 $y = B$
 $s|eep(6)$
 $A?$ $s|eep(3)$
 $A?$ $s|eep(3)$
 $B?$ $s|eep(1)$

Relevant Statements and Options

Dynamic Analysis

Transform AST

AB

$$x = A$$
 $y = B$
 $s|eep(6)$
 $if(x) \Leftrightarrow \{x_A y_0\}$
 $A? = if(y) \Leftrightarrow \{x_A y_0\}$
 $S|eep(1)$
 $S|eep(1)$

AB

$$x = A$$
 $y = B$
 $s|eep(6)$

O if $(x) \leftrightarrow \{x_A \neq 0\}$
 $s|eep(3)$

O if $(y) \leftrightarrow \{x_A \neq 0\}$
 $s|eep(1)$

AB

$$x = A$$
 $y = B$
 $s|eep(6)$
 $if(x) \leftrightarrow \{x_A y_G\}$
 $A? = A$
 $s|eep(3)$
 $f(y) \leftrightarrow \{x_A y_G\}$
 $f(y) \leftrightarrow \{x_A y_G\}$

$$+=thon -= olse$$

AB (1) (2) T

00 -0 -0 6

1 1 +3 +1 10

$$AB$$

$$x = A$$

$$y = B$$

$$s|eep(6)$$

$$if(x) \leftrightarrow \{x \land y \circ\}$$

$$A? \quad s|eep(3)$$

$$if(y) \leftrightarrow \{x \land y \circ\}$$

$$s|eep(1)$$

$$34$$

AB

$$x = A$$
 $y = B$
 $s|eep(6)$
 $i f(x) \Leftrightarrow \{x_A y_G\}$
 $a|f(y) \Leftrightarrow \{x_A y_G\}$

Future Directions

Apply in Real Programs

C

Java

RQ: How often can we exploit lack of interactions to measure performance?

Augment Tracking Information

$$x = A$$

 $y = B$
 $s|eep(6)$
 $if(x)$
 $s|eep(3)$
 $b?[if(y)]$
 $s|eep(0)$

Augment Tracking Information

$$\begin{array}{l}
x = A \\
y = B \\
s|eep(6) \\
if(x) \\
s|eep(3)
\end{array}$$
B? [if(y) s|eep(0)

Augment Tracking Information

$$\begin{array}{l}
x = A \\
y = B \\
s|eep(6) \\
if(x) \\
s|eep(3)
\end{array}$$
B? [if(y) s|eep(0)

Summary

From Black-Box to White-Box

Static Taint Analysis with Dynamic Analysis

New pruning strategies in real programs

Data-flow Example

ABCD
$$y = \beta$$

 $y = \beta$
 $y = \beta$