
Practical Impacts of Variability in the
Linux Kernel

Julia Lawall (Inria/LIP6)

March, 2017

1



Context

Linux is critical software.

• Used in embedded systems, desktops, servers, etc.

Linux is very large.

• Over 24 000 .c files

• Almost 15 million lines of C code in Linux 4.10.

• Increase of 56% since July 2011 (Linux 3.0).

Linux has both more and less experienced developers.

– Maintainers, contributors, developers of proprietary drivers

Developers need reliable and precise information...

2



Context

Linux is critical software.

• Used in embedded systems, desktops, servers, etc.

Linux is very large.

• Over 24 000 .c files

• Almost 15 million lines of C code in Linux 4.10.

• Increase of 56% since July 2011 (Linux 3.0).

Linux has both more and less experienced developers.

– Maintainers, contributors, developers of proprietary drivers

Developers need reliable and precise information...

3



Goal: Automate bug finding and evolutions in C code

Find once, fix everywhere.

Approach: Coccinelle: http://coccinelle.lip6.fr/

• Static analysis to find patterns in C code.

• Automatic transformation to perform evolutions and fix bugs.

• User scriptable, based on patch notation
(semantic patches).

Goal: Be accessible to C code developers.

4

http://coccinelle.lip6.fr/


Goal: Automate bug finding and evolutions in C code

Find once, fix everywhere.

Approach: Coccinelle: http://coccinelle.lip6.fr/

• Static analysis to find patterns in C code.

• Automatic transformation to perform evolutions and fix bugs.

• User scriptable, based on patch notation
(semantic patches).

Goal: Be accessible to C code developers.

5

http://coccinelle.lip6.fr/


Example

Evolution: A new function: kzalloc (Linux 2.6.14)
=⇒ Collateral evolution: Merge kmalloc and memset into kzalloc

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL );

if (!fh) {

dprintk(1,

KERN_ERR

"%s: zoran_open (): allocation of zoran_fh failed\n",

ZR_DEVNAME(zr));

return -ENOMEM;

}

memset(fh, 0, sizeof(struct zoran_fh ));

6



Example

Evolution: A new function: kzalloc (Linux 2.6.14)
=⇒ Collateral evolution: Merge kmalloc and memset into kzalloc

fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL );

if (!fh) {

dprintk(1,

KERN_ERR

"%s: zoran_open (): allocation of zoran_fh failed\n",

ZR_DEVNAME(zr));

return -ENOMEM;

}

memset(fh, 0, sizeof(struct zoran fh));

7



A kmalloc → kzalloc semantic patch

@@

expression x, sz;, E

identifier f;

@@

x =

kmalloc

+ kzalloc

(sz , ...)

... when != (<+...x...+>) = E

when != f(...,x,...)

memset(x, 0, sz);

8



A kmalloc → kzalloc semantic patch

@@

expression x, sz;, E

identifier f;

@@

x =

- kmalloc

+ kzalloc

(sz , ...)

... when != (<+...x...+>) = E

when != f(...,x,...)

- memset(x, 0, sz);

9



A kmalloc → kzalloc semantic patch

@@

expression x, sz;, E

identifier f;

@@

x =

- kmalloc

+ kzalloc

(sz , ...)

... when != (<+...x...+>) = E

when != f(...,x,...)

- memset(x, 0, sz);

10



A kmalloc → kzalloc semantic patch

@@

expression x, sz , E;

identifier f;

@@

x =

- kmalloc

+ kzalloc

(sz , ...)

... when != (<+...x...+ >) = E

when != f(...,x,...)

- memset(x, 0, sz);

11



Results

• Correctly updates 14 occurrences

– 5 false positives, could be eliminated by more “when” tests

• Other opportunities:

– acpi os allocate → acpi os allocate zeroed

– dma pool alloc → dma pool zalloc

– dma alloc coherent → dma zalloc coherent

– kmem cache alloc → kmem cache zalloc

– pci alloc consistent → pci zalloc consistent

– vmalloc → vzalloc

– vmalloc node → vzalloc node

12



Results

• Correctly updates 14 occurrences

– 5 false positives, could be eliminated by more “when” tests

• Other opportunities:

– acpi os allocate → acpi os allocate zeroed

– dma pool alloc → dma pool zalloc

– dma alloc coherent → dma zalloc coherent

– kmem cache alloc → kmem cache zalloc

– pci alloc consistent → pci zalloc consistent

– vmalloc → vzalloc

– vmalloc node → vzalloc node

13



A more complex example: Constification

Motivation:

• The Linux kernel uses structures heavily

– Many contain function pointers.

– Analogous to OO classes.

• Security risk:

– Overwriting function pointers allows executing arbitrary code
with kernel privileges.

– Overwriting other values can lead to e.g. invalid device
interactions, crashes, and DoS.

14



A more complex example: Constification

Motivation:

• The Linux kernel uses structures heavily

– Many contain function pointers.

– Analogous to OO classes.

• Security risk:

– Overwriting function pointers allows executing arbitrary code
with kernel privileges.

– Overwriting other values can lead to e.g. invalid device
interactions, crashes, and DoS.

15



Structure usage: Example

static struct ethtool_ops hip04_ethtool_ops = {

.get_coalesce = hip04_get_coalesce ,

... };

static struct net_device_ops hip04_netdev_ops = {

.ndo_open = hip04_mac_open ,

... };

static int hip04_mac_probe(struct platform_device *pdev) {

struct net_device *ndev;

...

ndev ->netdev_ops = &hip04_netdev_ops;

ndev ->ethtool_ops = &hip04_ethtool_ops;

...

ret = register_netdev(ndev);

...

}

static struct platform_driver hip04_mac_driver = {

.probe = hip04_mac_probe ,

... };

module_platform_driver(hip04_mac_driver );

16



Structure usage: Example

static struct ethtool_ops hip04_ethtool_ops = {

.get_coalesce = hip04_get_coalesce ,

... };

static struct net_device_ops hip04_netdev_ops = {

.ndo_open = hip04_mac_open ,

... };

static int hip04_mac_probe(struct platform_device *pdev) {

struct net_device *ndev;

...

ndev ->netdev_ops = &hip04_netdev_ops;

ndev ->ethtool_ops = &hip04_ethtool_ops;

...

ret = register_netdev(ndev);

...

}

static struct platform_driver hip04_mac_driver = {

.probe = hip04_mac_probe ,

... };

module_platform_driver(hip04_mac_driver );

17



Structure usage: Example

static struct ethtool_ops hip04_ethtool_ops = {

.get_coalesce = hip04_get_coalesce ,

... };

static struct net_device_ops hip04_netdev_ops = {

.ndo_open = hip04_mac_open ,

... };

static int hip04_mac_probe(struct platform_device *pdev) {

struct net_device *ndev;

...

ndev ->netdev_ops = &hip04_netdev_ops;

ndev ->ethtool_ops = &hip04_ethtool_ops;

...

ret = register_netdev(ndev);

...

}

static struct platform_driver hip04_mac_driver = {

.probe = hip04_mac_probe ,

... };

module_platform_driver(hip04_mac_driver );

18



Structure usage: Example

static struct ethtool_ops hip04_ethtool_ops = {

.get_coalesce = hip04_get_coalesce ,

... };

static struct net_device_ops hip04_netdev_ops = {

.ndo_open = hip04_mac_open ,

... };

static int hip04_mac_probe(struct platform_device *pdev) {

struct net_device *ndev;

...

ndev ->netdev_ops = &hip04_netdev_ops;

ndev ->ethtool_ops = &hip04_ethtool_ops;

...

ret = register_netdev(ndev);

...

}

static struct platform_driver hip04_mac_driver = {

.probe = hip04_mac_probe ,

... };

module_platform_driver(hip04_mac_driver );

19



Constification: Generic approach

• Search for contexts where a structure is used

• Check for const types

• Problem: Can be expensive

– net device is defined in include/linux/netdevice.h

– Not the current file or an immediately included one.

– Recursive includes are expensive.

20



Constification: Generic approach

• Search for contexts where a structure is used

• Check for const types

• Problem: Can be expensive

– net device is defined in include/linux/netdevice.h

– Not the current file or an immediately included one.

– Recursive includes are expensive.

21



Constification: Tailored approach

• Search for context where const structures of the same type
are used.

• Check that the target structure is only used in these contexts.

• No need for header files.

22



Constification

@r disable optional_qualifier@

identifier i;

@@

static struct net_device_ops i = { ... };

@ok@

identifier r.i; struct net_device e; position p;

@@

e.netdev_ops = &i@p;

@bad@

position p != ok.p; identifier r.i;

@@

i@p

@depends on !bad disable optional_qualifier@

identifier r.i;

@@

static

+const

struct net_device_ops i = { ... };

Updated 8 drivers in Linux 4.5 (patches subsequently integrated)
23



Constification

@r disable optional_qualifier@

identifier i;

@@

static struct net_device_ops i = { ... };

@ok@

identifier r.i; struct net_device e; position p;

@@

e.netdev_ops = &i@p;

@bad@

position p != ok.p; identifier r.i;

@@

i@p

@depends on !bad disable optional_qualifier@

identifier r.i;

@@

static

+const

struct net_device_ops i = { ... };

Updated 8 drivers in Linux 4.5 (patches subsequently integrated)
24



What about variability?

Coccinelle applies a semantic patch to a complete code base

• Unaware of makefile constraints

• If #ifdefs are well structured, they are converted to if-like
control flow structures.

• Undisciplined #ifdefs disappear or choose first branch.

25



Possible impacts

False positives, false negatives

• In a top-level declaration.

• In a function.

• Across functions.

Example:

const struct raid6_recov_calls raid6_recov_avx512 = {

...,

#ifdef CONFIG_X86_64

.name = "avx512x2",

#else

.name = "avx512x1",

#endif

.priority = 3,

};

26



Variability issues within functions?

Total fns Fns w/ #if[n][def] Fns w/ #else

.c files 403,801 12,998 (3%) 2,445 (0%)

.h files 037,955 01,084 (2%) 0,512 (1%)

Coccinelle parsing of #ifdefs in Linux 4.10 functions:

• 16,410 treated in a structured way

• 201 (0.012%) ignored or use the first branch

27



Variability issues within functions?

Common categories of functions containing ifdefs (Linux v4.10):
(reachable by unfolding 0, 1, or 2 calls)

Category number

EXPORT SYMBOL, arg 1 886 (3%)
EXPORT SYMBOL GPL, arg 1 490 (2%)
module init, arg 1 484 (9%)
pci driver.probe 367 (7%)
request irq, arg 2 337 (7%)
platform driver.probe 241 (3%)
module exit, arg 1 207 (5%)
net device ops.ndo open 148 (7%)
INIT WORK, arg 2 125 (2%)
file operations.unlocked ioctl 105 (5%)

28



Variability issues across functions?

Function names with multiple non-static definitions:

All in one file All in one dir One dir + arch

arch 90 1230 −
drivers 106 433 118
kernel 59 106 116
mm 28 121 34
fs 16 58 7

0.5% of Linux kernel function names have multiple non-static
definitions

29



Variability issues across functions?

Inconsistent properties
(.c and .h files of Linux 4.10):

• 4 function names have definitions with inconsistent locking
assumptions

– All false positives

• 1 function name has all parameters const in all but one case.

• 1 function name has one instance that returns only ERR PTR;
the others can also return NULL

• 21 functions names have definitions that make inconsistent
assumptions about whether an argument is NULL

1% of function names with multiple definitions

30



Variability issues across functions?

Inconsistent properties
(.c and .h files of Linux 4.10):

• 4 function names have definitions with inconsistent locking
assumptions

– All false positives

• 1 function name has all parameters const in all but one case.

• 1 function name has one instance that returns only ERR PTR;
the others can also return NULL

• 21 functions names have definitions that make inconsistent
assumptions about whether an argument is NULL

1% of function names with multiple definitions

31



Variability and the Coccinelle user

• Coccinelle makes it easy to make changes that may be hard to
test.

• Compilation testing is often the only alternative.

• Variability means that not all changed lines may be subjected
to compilation.

32



Our proposal: JMake [DSN 2017]

Automates:

• Choice of architecture

– The Linux kernel configuration space is mostly determined by
this choice.

• Mutation of changed lines, to verify that they are subjected to
the compiler.

– Ensure .i files contains the mutation

– Ensure the unmutated file produces a .o file

– Minimal mutations, to reduce validation effort

33



Results for kmalloc+memset → kzalloc

• 52 patches, introducing 133 kzallocs (Linux v3.0 - Linux v4.4)

• For 2 files (2 patches) unable to choose an architecture

• For 1 file (1 patch) under a configuration variable that is
never defined in the kernel.

– ifdef is far from the change site and easy to miss

• For 7 files (5 patches) cause unknown (no apparent ifdef).

– Likely compilation issues
– In 1 of these files, the change is under #if NOT YET

For 85% of patches, all changed lines subjected to compilation.

34



Results for my constification patches

• 194 patches

• For 5 files (3 patches) there is no Makefile in the directory
with the changed file.

• For 2 files (2 patches) unable to choose an architecture

• For 3 files (3 patches) a function has two possible headers,
only one subjected to compilation (if/else problem)

• For 1 file (1 patch) 2 function headers for x86 and 2 for arm64

For 95% of patches, all changed lines subjected to compilation.

35



Conclusion

• Pattern based language for matching and transforming C code

• Coccinelle mentioned in over 4800 Linux kernel patches

– Also used by wine, systemd, qemu, etc.
– Some support for C++

• Configuration-independent

– Only rarely a problem for practical usage cases.

• Current work: Automatic inference of transformation rules to
automate driver backporting and forwardporting

– PhD and postdoc positions available!

http://coccinelle.lip6.fr/

36


